Deep MR to CT Synthesis Using Unpaired Data
نویسندگان
چکیده
MR-only radiotherapy treatment planning requires accurate MR-to-CT synthesis. Current deep learning methods for MR-to-CT synthesis depend on pairwise aligned MR and CT training images of the same patient. However, misalignment between paired images could lead to errors in synthesized CT images. To overcome this, we propose to train a generative adversarial network (GAN) with unpaired MR and CT images. A GAN consisting of two synthesis convolutional neural networks (CNNs) and two discriminator CNNs was trained with cycle consistency to transform 2D brain MR image slices into 2D brain CT image slices and vice versa. Brain MR and CT images of 24 patients were analyzed. A quantitative evaluation showed that the model was able to synthesize CT images that closely approximate reference CT images, and was able to outperform a GAN model trained with paired MR and CT images.
منابع مشابه
Adversarial Image Synthesis for Unpaired Multi-modal Cardiac Data
This paper demonstrates the potential for synthesis of medical images in one modality (e.g. MR) from images in another (e.g. CT) using a CycleGAN [25] architecture. The synthesis can be learned from unpaired images, and applied directly to expand the quantity of available training data for a given task. We demonstrate the application of this approach in synthesising cardiac MR images from CT im...
متن کاملCross-modality image synthesis from unpaired data using CycleGAN: Effects of gradient consistency loss and training data size
CT is commonly used in orthopedic procedures. MRI is used along with CT to identify muscle structures and diagnose osteonecrosis due to its superior soft tissue contrast. However, MRI has poor contrast for bone structures. Clearly, it would be helpful if a corresponding CT were available, as bone boundaries are more clearly seen and CT has standardized (i.e., Hounsfield) units. Therefore, we ai...
متن کاملAdversarial Synthesis Learning Enables Segmentation Without Target Modality Ground Truth
A lack of generalizability is one key limitation of deep learning based segmentation. Typically, one manually labels new training images when segmenting organs in different imaging modalities or segmenting abnormal organs from distinct disease cohorts. The manual efforts can be alleviated if one is able to reuse manual labels from one modality (e.g., MRI) to train a segmentation network for a n...
متن کاملGenerating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method
Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...
متن کاملDeep Embedding Convolutional Neural Network for Synthesizing CT Image from T1-Weighted MR Image
Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis b...
متن کامل